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1. INTRODUCTION

A number of recent papers 1 - 4 have pointed out that the gamma radiation
from commonly used cobalt-60 sources is by no means limited to the monoener-
getic photons at 1.17 and 1.33 MeV. The photon spectra of all practically 6

realizable cobalt-60 irradiators include sizable low-energy Compton scattered 6
components which, in some source configurations, can be very large indeed. ,

The importance of low-energy photons to interface dose-enhancement effects,
especially in semiconductor devices consisting of thin layers of materials of
dissimilar atomic numbers, has also been described in a number of papers since
1970.5-9 It is therefore clear that it is important to have some knowledge of
the low-energy scattered gamma component of the particular cobalt-60 source
which one is using for radiation effects testing of microelectronic devices
and circuits. It is also unfortunately true, however, that this information
is difficult to obtain. It is evident from recent experience with Monte-Carlo
calculations of the gamma spectra of a few particular source configurations

3 , 
3 

4

that such calculations are extremely costly and time consuming. It is also
not possible to draw general conclusions about the spectra of broad classes of
cobalt-60 irradiators. Each specific configuration must be calculated indi-
vidually.

In this paper we present an experimental method which gives a simple, .-

easy, and direct method for determining the relative magnitude of the low-
energy gamma component for any given cobalt-60 source geometry and experi-
mental arrangement. It had been conjectured by a number of people for the
past two years that measurement of the equilibrium dose using both a low-Z
(Si, for example) and a high-Z (Au, for example) dosimeter of some kind would
provide sufficient spectral information. In January of 1984, E. A. Burke*
suggested that a thin air-ionization chamber with interchangeable aluminum and '

gold walls might be a practical implementation of such a pair of dosimeters.
In this paper, we discuss the design of such an ionization chamber, present
experimental data taken at a number of cobalt-60 facilities, and compare the
experimental results with Monte-Carlo calculations of the spectra and with
direct spectrum measurements using a novel dosimetric technique developed by
one of the authors.

The detailed rationale of the design of the ionization chamber is dis-
cussed in section 2. Appendix A contains the complete fabrication drawings of
the ionization chamber.

•L. F. Lowe, J. R. Capelli, and E. A. Burke, IEEE Trans. Nucl. Sci., NS-29 (1982), 1992.

2J. C. Garth, E. A. Burke, and S. Woolf, IEEE Trans. Nucl. Sci., NS-27 (1980), 1459.

35• Woolf and A. R. Frederickson, IEEE Trans. Nucl. Sdi., NS-30 (1983), 4371.
S. Woolf and E. A. Burke, IEEE Trans. Nucl. Sci., NS-31 (1984), 1089. Ip.

5J. A. Wall and E. A. Burke, IEEE Trans. Nucl. Sci., NS-17, No. 6 (December 1970), 305.
6J. C. Garth, W. L. Chadsey, and R. L. Sheppard, Jr., IEEE Trans. Nucl. Sci., NS-22 (1975),

2562.
7W. L. Chadsey, IEEE Trans. Nucl. Sci., NS-25 (1978), 1591.
8D. B. Brown and C. M. Dozier, IEEE Trans. Nuc . Sci., NS-29 (1982), 1996.
90. M. Long, 0. G. Millward, and J. Wallace, IEEE Trans. Nucl. Sci., NS-29 (1982), 1980. .
*E. A. Burke, Rome Air Development Center, L. G. Hanscom AFB, NA, 01731. Communicated at ASTM

Subcommittee E-10.07 meeting, San Diego, CA, 25 January 1984.
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Section 3 contains the theoretical derivation and experimental measurement
of the energy response function of the ionization chamber.

Results of measurements of a variety of cobalt-60 irradiators with the
ionization chamber are given in section 4. Section 5 presents the results of
a direct measurement of some cobalt-60 irradiator spectra using a differential
absorption technique. In section 6 the ionization chamber data of section 4
are compared with the results one would expect from the measured spectra, and
with some calculated spectra from the recent literature.

Section 7 shows how the ionization chamber data can be related to the
dose-enhancement factor near the boundary of two dissimilar materials.
Appendix B contains a simple empirical model for calculating dose enhancement.

Finally in section 8 we conclude that the gold- and aluminum-walled ioni- K
zation chamber is a simple and easy tool for qualitatively assessing the
magnitude of the low-energy component of cobalt-60 irradiator spectra.

2. IONIZATION CHAMBER DESIGN .

In order to make aluminum and gold equilibrium dose measurements at a
large variety of cobalt-60 facilities, an ionization chamber should satisfy
the following criteria: ..-

(a) The walls (Al or Au) must be thick enough to establish charged-
particle equilibrium at the location of the air-filled cavity.

(b) The cavity must be thin enough to satisfy the Bragg-Gray criterion;
that is, the cavity dimensions must be small relative to the range of second-
ary electrons produced by photons in the wall material.

(c) The chamber should be useable over the range of exposure rates from
100 R/hr to 100 R/s. This means that the chamber response should be substan-
tially linear with exposure rate up to 100 R/s. On the other hand, since the
chamber is used only for relative measurements, its absolute calibration (in
amperes per roentgen per second) need not be known precisely.

Wall and Burke5 have shown that near an aluminum/gold interface, charged-
particle equilibrium for cobalt-60 radiation is established 1000 pm into the

* aluminum and 50 pm into the gold. Therefore, to satisfy criterion a above,
* the aluminum dose measurement is made with 1500-um (0.060 in.) thick aluminum

walls. The gold dose measurement is made with 50-pm (0.002 in.) walls of gold
-" on The cavity side, backed up with 1500 pm of aluminum on the outside.

5J. A. Wall and E. A. Burke, IEEE Trans. Nucl. Sct., NS-17, No. 6 (December 1970), 305.

6
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In order to satisfy criteria b (thin air cavity) and c (good sensitivity
at 100 R/hr) we decided to use a parallel-plate geometry for the chamber. The
collecting efficiency for a parallel-plate ionization chamber is given by' 0' 1'

f = (I + m2qd4/6V2) -  (1)

where

f = charge collected/charge generated,
m = Boag's constant = 36.7 ± 2.2 for air at standard temperature and

pressure, ...

q = ionization rate (esu/cm'-s),
d = electrode spacing (cm),
V = collecting voltage (V).

Trom the definition of the roentgen (I R 1 esu/cm3 ), we see that 1 esu/cm3 -s
1 1 R/s. Therefore, we can substitute the exposure rate, X (in roentgens per

second), for q in equation (1). Criterion b requires that d be 3 mm, since
the range of 10-keV electrons in air is 2.4 mm. If we require that f > 0.95 ....

for X < 100 R/s (criterion c), then equation (1) will be satisfied for d
3 mm and V = 60 V.

The collected ionization current of a parallel-plate ionization chamber is
given by"-

~- 10
I = 3.33 x 1 0  fAd , (2) ..-..

where

f = collection efficiency,
= exposure rate (R/s),

A = area of cavity (cm2 ), and
d = thickness of cavity (cm).

Since tens of picoamperes are easy to measure reliably, a chamber sensitivity .-.

of 1 nA/R-s 1 will satisfy the sensitivity criterion c at 100 R/hr. A cavity
diameter, D, of 4 cm, d = 3 mm, and f 1 1 gives a chamber sensitivity of 1.26
nA/R-s-

In summary then, an ionization chamber satisfying all these criteria would
have the following specifications:

10T. E. Burlin, The Theory of Dosimeter Response with Particular Reference to Ionization
Chambers, chapter II in Manual on Radiation Dosimetry, ed. by N. W. Holm and R. J. Berry, Marcel
Dekker Inc., New York (1970), p 27.

11J. W. Boag, Ionization Chambers, chapter 9 in Radiation Dosimetry, ed. by F. H. Attix and W.

C. Roesch, 2nd edition, vol. II, Academic Press, New York (1966), p 16.12R. D. Evans, The Atomic Nucleus, McGraw-Hill, New York (1955), p 725.

7
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cavity diameter, D = 4.0 cm 1$

electrode spacing, d = 0.3 cm
bias voltage, V = 60 V
Al wall thickness = 0.060 in. of Al

Au wall thickness = 0.002 in. of Au, backed by 0.060 in. of Al

This chamber will have the following collection efficiencies and approximate
calibration:

At X = 100 R/s: f = 0.95 and I/X = 1.20 nA/R-s
-1

At X < 9.7 R/s: f = 1.00 and I/X - 1.26 nA/R-s -

An exploded view of the ionization chamber is shown in figure 1 (complete
drawings are given in app A). The chamber body is made from polystyrene to
minimize leakage currents. No guard ring is used because the 4.0 : 0.3 cm

aspect ratio is very high and because it is not necessary to know the absolute
calibration of the chamber. Connection from the Trompeter TWC 78-2 twinaxial

cable to the chamber electrodes is by mechanical pressure from the electrode

cover plates.

The 60-V bias was provided by a Hewlett-Packard Model 6212B 0- to 100-V dc

power supply. The ionization current was measured by a Keithley Model 614

digital electrometer. The resolution of the electrometer is +0.01 pA on its
most sensitive range, making current measurements of tens of picoamperes quite

feasible and accurate.

Autli Electrode /r,

AuiAI Electrode

Polystyrene .,

~~Clamp Stem with •-.
S Twinax Cable " 'o

Plasicj Cover

Figure 1. Exploded view of ionization chamber.
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3. ENERGY RESPONSE FUNCTION

Spectral quality measurements of a cobalt-60 source using the gold/alumi-
num ionization chamber are made as follows. Using the 0.060-in. aluminum
electrodes, the ionization current, IAl' is measured at the experimental
position of interest. Next, the 0.002-in. gold + 0.060-in. aluminum elec-
trodes are inserted (gold on the inside) and the ionization current, IAu' is
measured at the same position. The ratio IAu/IAl is indicative of the
spectral purity of the gamma radiation.

In order to compare the measured IAu/IA response with the theoretical .

prediction for a given photon spectrum, it is necessary to know the monoener-
getic photon energy response function S(E) IAu(E)/IAl(E) for the ionization
chamber. .t .p "..

3.1 Theoretical Derivation

The Bragg-Gray equation for an ionization chamber is 1 3

D = gW e;g. ,(3) ... -.

where m g-mg
Dm = dose in an irradiated medium, m, near a small cavity filled

with a gas, g,

Q = ionization charge/unit mass in the gas
= (collected charge/f)/(cavity volume x density of gas, pg),

W = energy expended per ion-pair formed

= 33.75 + 0.15 eV/ion-pair,

e = charge of electron, and

s = average mass stopping power ratio*

MeV, International Commission on Radiation Units and Measurements, ICRU Report 14, Washington -- '1"

(1969), p 4.
*lIn the continuous-siowing-down-approximation (csda), the mass stopping power S(E) is given by

f(E) = l/S(E)

where -.- '
f(E) = electron spectrum (g-cm-2-MeV- I) , S(E) : mass stopping power (MeV-cm2-g- ]) "[?:?

The average mass stopping power is then given by ,-..-

S = Emx SEf(E )f dE/ fiE) dE

= E /R(E".

(1969),...4.

whr t(Ea is range o elecros oenergy Emax, Therefore, for secondary electrons, S

whereRma sth ofeetosoEa .

/R ), =eceptro K-absorption edge where one should use R(Es- K pbs).

The exep ear atppn poYe isthngienb

9a M:a E
"0 fo:'

- "-",~~ ~ ~ "A, E .. -- . -,,,_:. ,,:" .<; , '- -. ',.. --. .'./ :,,-... -' -. ,--..-' . "- .



If the cavity is filled with air, we can rewrite equation (3):

m = J (W/e)(R air /R , (4)

where

J = ionization current/unit mass

= (observed current/f )/(cavity volume Pair) "'Im/fAdPair•

Equation (4) becomes

D= KI (Rair (

where

K W/efAdPair , (6)

which is a constant depending only on ionization chamber parameters. Solving

equation (5) for Im gives

= K1 m(R m /R air)-7

which is the observed current in an air-filled ionization chamber of wall

material m, when the absorbed dose rate in the wall material near the cavity
isD.m -. -

Now, for the case of charged particle equilibrium

Dm = te/Pm (8),-

m Yen m

where

photon energy fluence rate (MeV-cm -2s - ) and
en/p mass energy absorption coefficient (cm2/g).

For thick chamber walls

= O exp[-en ' (9)

where

= incident photon energy fluence rate,

en/P)= mass energy absorption coefficient of walls,

Pw = density of walls (g/cm3 ), and
tw = thickness of walls (cm).

For the two configurations of our ionization chamber, combining equations (7),

(8), and (9), we have

10

.--* .- -- -*-.. ..-. -- --...- .-.. .*...-,. -* --.*-v,,-- .-.c...*.-.. :- - .. .- * -- --. .- ...- .-.- ?-- ?-..'.-/??<i-i? •ii-:



IAl = K 0 exp[-[(en/P)AlPAltAl] Ven/P)Al (RAl /Rair )  (10a)

and

IAu K 0 e en AlAltAl (en/PjAuPAutAu (lOb)

x (Ien/p)Au(RAu/Rair)

Division of equation (lOb) by equation (10a) gives the monoenergetic photon
response function S(E) = IAu (E)/IAI(E):

(P /p) R
S(E) = en Au Au exp[-(en/P)APutu] . (11) -

(Pen/p)A1 RA en Au Au Au

The electrodes of the ionization chamber were made from aluminum alloy 7075.
We assumed the following composition for this alloy:

Al: 0.901
Zn: 0.056 .
Mg: 0.025
Cu: 0.016
Cr: 0.002

1.4
Using values of Pen/P tabulated by Evans 1 and Hubbell15  and values of R -
tabulated by Berger and Seltzer,"1 as well as the experimentally determined --
value of

PAutAu = 0.0974 g/cm--

for the gold foil covering on the Al + Au electrodes, we calculate the energy
response function shown by the solid line in figure 2. -_

3.2 Experimental Determination

The monoenergetic response function of the actual chamber was also
measured directly at the five points indicated by circles in figure 2. These
measurements were made with a heavily filtered x-ray source of x-ray energies
of 38, 70, 113, 169, and 206 keV. The dashed line in figure 2 is the best
smooth-curve fit through these five experimental points.

14R. D. Evans, X-Ray and y-Ray Interactions, chapter 3 in Radiation Dosimetry, ed. by F. H.
Attix and W. C. Roesch, ed., 2nd edition, vol I, Academic Press, New York (1968), p 125 ff.

15j. H. Hubbell, Trends in Radiation Dosimetry, 33, No. 11 (November 1982).
16M. J. Berger and S. M. Seltzer. Tables of Energy Losses and Ranges of Electrons and Posi-

trons, National Aeronautics and Space Administration, NASA SP-3012, Washington (1964). .

11;7];;
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Photon Energy, MeV --.,--,

Figure 2. Ionization chamber energy 
response function.-,...

We attribute the discrepancy between the calculated 
and experimental.-.:

curves to these factors:"-.

.°.2

(a) The actual metallurgical composition of our aluminum plates is : :

not known. In particular, a higher fraction of zinc and copper would lower

the calculated value of S(E). 
,.,

(b) The air volume thickness of 3 mm does not approximate the Bragg-,:-'
Gray condition very well 

at low photon energies. We verified this by repeat-

ing the filtered x-ray measurements for air volume thicknesses of 4 and 5

M. These measurements showed that better agreement between the two curves

would result from the use of an electrode spacing considerably less than 3L
Fm. However, such an ionization chamber would be impractical to use. More-

over, for the purposes of cobalt-60 source testing, it is not very important

to achieve exact agreement of this chamber parameter with theory, as long as

we know the actual measured value.

12.°-

• ° Gray o nditi, ,o ver well at, o w oo n energies , .. We verified.this by repeat.

"" ing. the "'; filtered" '. . .. ' x'. " ' " -.-ray. measurements -".-''.; ; ; for aivolum thicknesses--' of "," and"-,' 5. .. " ". ". -.
mm. hes meaureent shoed hatbettr areeent etwen he to crve
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(c) The approximation that S(EeJ = Emax/R(Emax) is not very good near
the K-absorption edge of gold at 80.8 keV.

The important point to note here is that the ionization chamber
response ratio for pure cobalt-60 gamma radiation (EY = 1.25 MeV) would be

1.6. Also note that very little scattered radiation of lower energy would be

expected to cause a significant increase in the chamber response ratio, since
the response function is close to 40 at E Y 100 keV. We would, therefore,

expect this IAu/IAl measurement to provide a very sensitive indication of the

purity of a cobalt source spectrum.

4. EXPERIMENTAL RESULTS

Various cobalt-60 sources were investigated with the ionization chamber in
a number of typical experimental configurations. These sources are described
briefly below.

4.1 Water Well Sources

In a typical water well source, the cobalt-60 elements are at the

bottom of a water-filled well which provides shielding for personnel protec-
tion. Source elements are usually slender cylindrical rods which are arranged
around the periphery of a cylindrical exposure volume. Objects to be irradi-

ated are enclosed in a water-tight thin-walled stainless steel container which

is lowered into the exposure volume, displacing most of the water. This NA
arrangement is illustrated diagrammatically in figure 3(a). Some facilities

also have provisions for placing the exposure canister outside the cobalt-60
array, using some of the intervening water to reduce the exposure rate in the

canister. This arrangement is shown in figure 3(b). Water well irradiators
were tested in various configurations at the U.S. Army Harry Diamond Labora-
tories (HDL), the Naval Research Laboratory (NRL), and the National Bureau of

Standards (NBS).

NRL pool I. HDL pool
-Water : - - :NRL pool, position Al position A Positio n W

HDL pool, position B ---
-_Stainless NSpo oiinA - - oiinW __

1 Steel _i 
Source

Can .. Cobalt ::Water So

MSorcesz-

a.i*

I-,o.L'.12750 I- L.. -
cm cm

b.

Figure 3. Water well irradiator: (a) detector surrounded by Co".

sources and (b) detector outside Co6 O sources.

13
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4.2 Concrete Rooms

Some facilities consist of a large concrete room in which the test
object is arranged. A cobalt-60 source is then exposed, either by lifting it
out of a lead or water shield or by opening a lead shutter. Two such sources %

which were investigated are at HDL and at the NASA Goddard Space Flight Center
(NASA).

At the HDL facility, the source array is lifted from a water well
approximately into the center of a 40-ft long by 12-ft high concrete room.
Two experimental arrangements were investigated: -.

(a) ionization chamber in center of room, about 30 cm from the source

array;

(b) ionization chamber 30 cm from the back wall and 75 cm from the
ceiling of this room.

These two arrangements are shown diagrammatically in figure 4(a).

The NASA fa- Concrete;'; **"*..'

cility consists of a : ...'. Concrete . ... .S.,*, ?

20 by 20 ft concrete
Detector

room. The cobalt ='.Position "
source is a plane * -
array, 9 by 18 in.,

approximately in the
center of one wall. Detector
The source array is Position + E - Co6 Source
exposed by lifting a A

massive lead shutter. .... ,.
Ionization chamber
locations were approx-
imately 35 cm from the

source and 35 cm from , '""
the rear wall of the b. . Conret.,-.-.
chamber. This ar-
rangement is shown di- ..- ,

agrammatically in fig- o urce
ure 4(b).

Detector Detector+I+Position Position+
.AA B

• 1' ,'.,.: :Window %'..

Door

Figure 4. Concrete room irradiation facilities:
(a) HDL (elevation) and (b) NASA (plan view).

14
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4.3 Lead-Shielded Sources

Two facilities have cobalt-60 sources inside lead shields.

The NBS vertical teletherapy source has an adjustable collimator and
a lead shutter, allowing the gamma rays to shine into a low-scatter hot cell.

The NASA source is a commercial Gammacell'"-220 irradiator manufac-
tured by AEC-Canada, Ltd. In this irradiator the source rods surround a
cylindrical cavity at the center of a large lead shield. The test object
(ionization chamber) is lowered into the center of this shield.

These two sources are illustrated diagrammatically in figure 5.

Shiel .0

Lead
Shte % Shield

Tungsten
olliatorCoO

Sources ~

12z olliatorIonization
Chamber

(a) (b)

Lead
Plug

Ionization
Chamber

Figure 5. Lead-shielded sources: (a) NBS teletherapy source and (b) NASA
Gammacel tm -220.
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Brown and Dozier 8 have recommended that whenever a significant low-
energy gamma component is expected, microelectronic circuits and components be
tested in a shield box made of O.063-in.-thick lead (on the Co60 side) and
0.030 in. of aluminum (on the test-object side). This filter box will harden
the spectrum by selectively attenuating the low-energy scattered component of
the radiation while not attenuating the primary gamma rays significantly.
Accordingly, all ionization chamber measurements were made with and without a
lead-aluminum filter.

The experimentally determined values of IAu/IAl, with and without
*v lead-aluminum filters, are presented in table 1 for the cobalt-60 source
* configurations of figures 3 to 5. Note that the NBS teletherapy source emits

the cleanest spectrum (IAu/IA : 2.18) as expected, and that the expected
high-scatter geometries (concrete room positions B and water well position W)
gave very high values of IAu/IA1 of 6.2 to 7.6. Also note that the ionization
chamber response for most filtered source configurations is as good as or
better than the best unfiltered source geometry.

TABLE 1. EXPERIMENTALLY DETERMINED VALUES OF IONIZATION CHAMBER
RESPONSE RATIO, IAu/IAl

Cobalt-60 source configuration Filter
Line Unfiltered Filtered
No. Place Type Position Figure IAu/

1
A1 Pb Al 

1
Au/IAI

(in.) (in.)

1 NRL Water well AI 3a 2.71 0.073 0.017 2.02
2 NBS Water well -- 3a 2.98 0.063 0.030 2.04
3 HDL Water well B 3a 3.23 0.063 0.030 2.11
4 NRL Water well A5 3b 3.86 0.073 0.017 2.28
5 HDL Water well W 3b 7.40 0.063 0.125 3.53

6 HDL Concrete room A 4a 2.70 0.063 0.000 2.12
7 HDL Concrete room B 4a 7.56 0.125 0.030 2.52
8 NASA Concrete room A 4b 2.93 0.063 0.030 2.21
9 NASA Concrete room B 4b 6.17 0.063 0.030 3.27

10 NBS Teletherapy source -- 5a 2.18 0.063 0.030 2.07
11 NASA Gammacell'-220 -- 5b 3.53 0.063 0.030 2.17

5. DIRECT MEASUREMENT OF COBALT-60 SOURCE SPECTRA

The spectra of the scattered radiation of some of the sources were meas-
ured by a differential absorption spectrometer. The use of differential
absorption by materials of differing Z and graded thicknesses to deduce photon
spectra in situations where pulse-height analysis is difficult or impossible
is not a new concept. Various investigators have used absorption "stacks" to
provide data which are then unfolded to yield the presumed incident spectrum.
This type of spectrometry is especially useful for the measurement of pulsed
bremsstrahlung fields where high-intensity, short-duration radiation pulses
are produced or, as in this case, where the radiation inten3ity cannot be

8D. B. Brown and C. M. Dozier, IEEE Trans. Nucl. Sci., NS-29 (1982), 1996.
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reduced to low enough levels for the use of methods which involve pulse count-
ing. The system used in these measurements has been devised to overcome some
of the difficulties inherent in previous spectrometers of this type.

5.1 Description of Differential Absorption Spectrometer

The spectrometer consists of a series of spherical shells each of
which contains a central cavity 3/8 in. in diameter. The shells range in -
thickness from 1/16 to 9/16 in. and are made from aluminum, titanium, copper,
and depleted uranium. In use, each cavity contains a CaF2:Mn thermolumines-
cent dosimeter (TLD) (Harshaw Chemical Co., TLD-400) wrapped in a single layer
of 1-mil aluminum foil. The materials and thicknesses are chosen to give a
series of absorption curves whose low-energy cutoffs are spaced reasonably
uniformly over the logarithmic range of energies available.

The detector response function of each of the spheres as a function

of energy, calculated from their energy-absorption coefficients, is shown in
figure 6. The measured energy dependence of the TLD detectors and the dose
enhancement due to the lack of electronic equilibrium have been included in
the figure. A series of measurements with standard heavily filtered x-ray
spectra and cesium-137 and cobalt-60 gamma-ray sources was used to check the Z. %

validity of the absorption calculations and, for the depleted uranium spheres,
to adjust them for the over-response caused by the high Z of the shield.
These measurements provided experimental checks at 38, 70, 117, 169, 206, 663,
and 1250 keV. In all cases except for the uranium shells, the agreement
between the measured and calculated response curves is quite good, and these .

curves are used as the final response functions. The paucity of energy cali-
bration points at the higher energy regions required empirical adjustment of
the uranium response functions. Their magnitudes were adjusted to give a 6*

minimum error in the unfolding code for the spectrum with the smallest low-
energy component.

5.2 Principle of Operation

Some specific attributes of this spectrometer make its use feasible
in this application. The TLD's used can be calibrated to a precision of about
1-1/2 percent. Such high precision facilitates the spectrum-unfolding process L
and removes the need for larger numbers of dosimeters, as have been used in
previous absorption spectrometers. The high sensitivity and wide dose range
of these detectors allow measurements of widely varying x- and gamma-radiation
fields. The fact that each individual TLD is positioned at the center of a
spherical shell reduces the directionality of the spectrometer. The absorbers
are not connected in a "stack" but remain individual and can be changed at
will. Though the set of absorption spheres is normally used in a group for an
irradiation, the versatility of this geometry allows them to be singly
irradiated in the limited space within the cobalt-60 pool irradiation cans,
with each sphere placed in the proper position in turn.

The general method of differential absorption spectrometry does have %
some unavoidable problems, however. There is an upper energy limit to its

. ... %

17 W

. % ....



mL

I- BARE

<A NUMBERS REFER TO
1r SHIELD THICKNESS

2 IN 1/16"

4* 6
ca ,

IS

W Ti

+ Figure 6. Monoenergetic photon
0 /////response functions of spherical

* u. 2 absorbers plus CaF 2 :Mn TLD's.
0
z

L.)

z. ". -z
04

0

0.01 0.1 1.0 10.0
PHOTON ENERGY (MeV)

usefulness, since even the highest Z materials do not have sufficient varia-
tions in their absorption coefficients to be useful above a few hundred kilo-
electronvolts. Specifically, such a spectrometer is most sensitive and re-
sponsive for measurements in the low-energy region (10 to 500 keV) but in the
present application, there are drawbacks for its most efficient use even at
these lower energies. In a spectrum where most of the energy lies above an
energy region of interest, unfolding the lower energy portion of the spectrum
must, by the nature of the response function shapes, depend on differences
between large numbers. Each detector responds to all the radiation above some -.

cutoff, as determined by the shape of the response function.

Though the details of the spectrum in the low-energy region will be .-

in doubt through such a fit, the amount of energy that is parceled to each
energy region will be useful in calculating field parameters. Since the
measurement consists of determining the energy that is transmitted through
various filters (essentially a measurement of dose as a function of depth--a
depth-dose curve of sorts), the code will give consistent results when fitting
the energy distributions to the accuracy that is possible. Using such energy
distributions to determine derived quantities (such as rads in silicon) does

18
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give relatively reliable results. However, since such quantities depend more

strongly on the specific shape of the spectrum in the low-energy region, they

will not be as consistent as the total energy results. Calculated values for

exposure (roentgens) are quite reliable, since the response of air does not
vary as sharply in the low-energy region as acoes that of silicon or higher Z
materials.

5.3 Unfolding Code

An integral part of any differential absorption spectrometer is the

unfolding code that is employed to recover the unknown spectrum. This system

makes use of an iterative perturbation code developed for use in unfolding
neutron spectra from Bonner sphere data. The code, titled YOGI, gives excep-

tionally stable solutions and allows the imposition of constraints, such as

varying degrees of smoothing, nonnegative solutions, and the initial input of

best-guess spectra. Such constraints facilitate the determination of "appro-

priate" solutions (solutions with physically reasonable shapes). The method

and basic concept are the same in measurements involving Bonner sphere neutron

or differential absorption x-ray data even though the response functions have
a different form.

The equation

i = SCE)R.(E) dE (12)

th
describes the response of the i detector, Q., to the spectrum to be deter-

mined, S(E), through the response function, RIE). Reduced to j finite energy

bins, the problem becomes the solution of i equations in j unknowns for the

spectrum values, S , that best fit the input data consisting of the detector

responses, Qi, and the response function, Rij:

Q. = S.R.. AEj . (13)

The code, YOGI, solves the equations by being given a starting spec-

trum (the more reasonable, the better) and calculating a set of Q-'s which are

compared with the measured values to determine an error paramete such as the

sum of the squares of the differences. The code then proceeds to perturb one

point in the trial spectrum by some fixed amount, recalculate the error, and

keep the perturbed value if the error has been improved. If not, that pertur-

bation is rejected. The perturbation procedure is then repeated in random

spectral energy bins until some given condition of fit has been met. The re-

sulting spectrum is then considered a solution to the equations. Such a solu-

tion may not be a unique or even an "appropriate" one. To some extent, the

solution depends on the initial input spectrum but even more so on constraints

that are imposed by the code. One such constraint is the imposition of a

certain amount of smoothing on the solution. Without smoothing, the solution
can vary widely from point to point, a condition which is physically unreason-
able and thus "inappropriate."
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5.4 Experimental Results

The differential absorption spectrometer was used to measure the 0,'.....
gamma spectra of seven of the cobalt-60 source configurations of table 1. 0.

These results are discussed in section 6, and illustrations are given.

6. COMPARISON OF IONIZATION CHAMBER DATA WITH CALCULATED AND MEASURED SPECTRA

Let O(E) be the differential photon energy spectrum (in units of MeV/MeV)
of any given cobalt-60 source, and let S(E) be the energy response function of
the ionization chamber as defined in equation (11). Then the expected ioniza-
tion chamber response ratio, IAuA/IA will be given by

IAu S(E)O(E) dE(1

IAl f O(E) dE

This expected response was calculated for all source configurations for which r
either a calculated or measured spectrum was available, and was compared with
the measured ionization chamber response. qj.

6.1 Monte-Carlo Calculations

The gamma spectra of the source configurations corresponding to lines
2, 5, 6, 7, and 11 of table 1 have been calculated by S. Woolf using a Monte-
Carlo transport code. 3'" These spectra are shown in figure 7 (p 22). The
ionization chamber energy response function of figure 2 was integrated over
each of these eight spectra to find the expected ionization chamber response
ratio, IAu/IAl These calculated responses are compared with the measured
values in table 2. The agreement is good, with a mean variation from the
measurpd responses of -21 percent.

TABLE 2. COMPARISON OF MEASURED VALUES OF I ,u/I A WITH THOSE
CALCULATED FROM MONTE-CARLO SPECTRA ref 3,4)

Cobalt-60 source configuration Filter
Line Measured Calculated Figureb

No. Place Type Position Figurea Pb + Al IAu/lAl IAuA/IA
(in.) (in.)

2 NBS Water well -- 3a (Unftiltered) 2.98 2.71 7g ," "-. .

5 HDL Water well W 3b (Unfiltered) 7.40 4.48 7a
0.063 0.125 3.53 2.80 7b

6 HDL Concrete room A 4a (Urnfiltered) 2.70 2.15 7c ". -

0.063 0.000 2.12 1.77 7d

7 HDL Concrete room B 4a (Unfiltered) 7.56 4.92 7e
0.125 0.030 2.52 1.94 7f ,

11 NASA Gammacell'-220 -- 5b (Unfiltered) 3.53 3.40 7h

aFigure showing source conf igurationi.
bFigure showing calculated spectrum.

3S. Woolf and A. R. Frederickson, IEEE Trans. Nucl. Sci., NS-30 (1983). 4371.
4S. Woolf and E. A. Burke, IEEE Trans. Nucl. Sci., NS-31 (1984), 1089.
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6.2 TLD Differential Absorption Measurements

The ionization chamber response function (fig. 2) was also integrated
over the gamma spectra which were measured for source configurations corre-
sponding to lines 1, 5, 6, and 7 of table 1. These measured spectra are shown

in figure 8 (p 24). The calculated responses are compared with the measured %
values in table 3. Again there is good agreement, with a mean variation from

the measured values of -18 percent. .. ,

TABLE 3. COMPARISON OF MEASURED VALUES OF IAu/IAl WITH THOSE
CALCULATED FROM MEASURED COBALT-60 SPECTRA

Cobalt-60 source configuration Filter b
Line Measured Calculated Figure
No. Place Type Position Figurea Pb + Al IAu/IAl IAu/I Al

(in.) (in.)

1 NRL Water well Al 3a (Unfiltered) 2.71 1.89 8a
0.073 0.017 2.02 1.84 8b

5 HDL Water well W 3b (Unfiltered) 7.40 7.09 8g

6 HDL Concrete room A 4a (Unfiltered) 2.70 1.89 8c

0.063 0.000 2.12 1.84 8d

7 HDL Concrete room B 4a (Unfiltered) 7.56 5.56 8e
0.125 0.030 2.52 2.17 8f

aFigure showing source configuration.
bFigure showing measured spectrum.

6.3 Relative Rankings

If we use the measured value of Iu/IAl as a relative figure of merit

for the hardness of a cobalt-60 spectrum, with lower IAu/IAl values denoting
spectra with smaller low-energy scattered components, then we can rank the

sources listed in table 1 by this parameter. Table 4 is a rearrangement of
the unfiltered source spectra in order of increasing IAu/IAl* The column
headed "Quality factor" contains an entirely arbitrary parameter defined as
follows:

Quality factor IAuA/I

I :2.50
II 2.51 to 3.00

HE 3.01 to 4.00

IV Z4.01

The NBS teletherapy source (line 10) is clearly in a class by itself. At the
other end of the spectrum, the anticipated high-scatter configurations (lines
5, 7, and 9) are equally clearly very bad. All others are grouped somewhere

between these extremes. If we now do a similar ranking on the filtered spec-
tra, we see the spectacular improvement shown in table 5. All sources which
had previously been in groups II and III are now in group I, with all but two
having a harder spectrum than the best unfiltered source: the NBS teletherapy
source. No useful conclusion can be drawn from group IV; line 7 moved from
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last place into group II because of much heavier filtering (0.125-in. Pb
versus 0.063-in. Pb), while line 5 probably moved into last place because of

the very thick aluminum layer in the filter which contributes a lot of scatter

of its own. However, all three of these high-scatter geometries moved from
group IV into, at worst, group III.

TABLE 4. RELATIVE RANKING OF UNFILTERED COBALT-60 SOURCES
IN ORDER OF DECREASING SPECTRAL HARDNESS

Line Cobalt-60 source configuration Unfiltered Quality _
No. I factor

Place Type Position Figure IAuAl acto

10 NBS Teletherapy source -- 5a 2.18 I

6 HDL Concrete room A 4a 2.70
1 NRL Water well Al 3a 2.71
8 NASA Concrete room A 4b 2.93
2 NBS Water well -- 3a 2.98

3 HDL Water well B 3a 3.23
11 NASA Gammacell'-220 -- 5b 3.53 III
4 NRL Water well A5 3b 3.86

9 NASA Concrete room B 4b 6.17
5 HDL Water well W 3b 7.40 IV
7 HDL Concrete room B 4a 7.56 ,.

TABLE 5. RELATIVE RANKING OF FILTERED COBALT-60 SOURCES
IN ORDER OF DECREASING SPECTRAL HARDNESS

Cobalt-60 source configuration Filter
Line Filtered Quality
No. Place Type Position Figure Pb + Al IAu/IAI factor

(in.) (in.)

1 NRL Water well Al 3a 0.073 0.017 2.02
2 NBS Water well -- 3a 0.063 0.030 2.04

10 NBS Teletherapy source -- 5a 0.063 0.030 2.07
3 HDL Water well B 3a 0.063 0.030 2.11 1
6 HDL Concrete room A 4a 0.063 0.000 2.12

11 NASA Gammacell'-220 -- 5b 0.063 0.030 2.17
8 NASA Concrete room A 4b 0.063 0.030 2.21
4 NRL Water well A5 3b 0.073 0.017 2.28

7 HDL Concrete room B 4a 0.125 0.030 2.52 II

9 NASA Concrete room B 4b 0.063 0.030 3.27 III
5 HDL Water well W 3b 0.063 0.125 3.53

2~4 . . . .. ... ... ... . ..
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7. INTERFACE DOSE ENHANCEMENT

Since the actual phenomenon of interest is the degree of interface dose

enhancement which might be expected for a given cobalt-60 source spectrum, it
is important to know whether the ionization chamber measurement can be related
to a dose-enhancement factor. In the following discussion, dose-enhancement
factor, FD , is taken to mean the dose in a low-Z material at the interface
with a high-Z material divided by the equilibrium dose in the low-Z material.
Specifically, we propose the following procedure:

(a) Determine the ionization chamber response ratio, IAu/IAl1 for a
.cobalt-60 source configuration of interest.

*" (b) Find an "effective" monoenergetic photon energy, Eeff, corresponding
to this ionization chamber response ratio from figure 2.

(c) Using published values of FDE versus E,,6 or calculating FDE using the
simplified model of Chadsey,7 find the dose-enhancement factor at the effec-
tive energy Eeff for the material combination of interest (an abbreviated
version of Chadsey's simplifed dose-enhancement model is given in app B).

In order to test the validity of this procedure, we calculated an esti-

mated dose enhancement factor, FDE, in Si at an Si/Au interface using steps
(a) to (c) above. For the monoenergetic dose-enhancement factor, FDE versus
EY we used Garth and Chadsey's POEM calculation for Si/Au (figure 1 of Garth
et a16 ). The results of this procedure are given in table 6 for all the
ionization chamber measurements given in table 1. Note that the dose
enhancement factor for a pure monoenergetic 1.25-MeV cobalt-60 gamma would be
1.68.

TABLE 6. ESTIMATED DOSE ENHANCEMENT FACTORS, FDE(Si/Au)

Cobalt-60 source configuration Filter
Line Unfiltered Filtered
No. Place Type Position Figure FDE Pb I Al FDE

(in.) (in.)

1 NRL Water well Al 3a 1.86 0.073 0.017 1.73
2 NBS Water well -- 3a 1.91 0.063 0.030 1.76
3 HDL Water well B 3a 1.96 0.Ob3 0.03u 1.74
4 NRL Water well A5 3b 2.09 0.073 0.017 1.77
5 HDL Water well W 3b 2.97 0.063 0.125 2.02

b HDL Concrete room A 4a 1.86 0.063 0.000 1.74
7 HDL Concrete room B 4a 3.02 0.125 0.030 1.83
8 NASA Concrete room A 40 1.91 0.063 0.0 0 1.87
9 NASA Concrete room B 4b 2.62 0.063 0.030 1.97

10 NBS Teletherapy source -- 5a 1.76 0.063 0.030 1.73
11 NASA Gammacell'-220 -- 5b 2.02 0.063 0.030 1.75

J. C. Garth, W. L. Chadsey, and R. L. Sheppard, Jr., IEEE Trans. Nuci. Sci., NS-22 (1975),

2562.7W. L. Chadsey, IEEE Trans. Nucl. Sci., NS-25 (1978), 1591.
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For cobalt-60 source configurations for which the spectrum is known (or,-...[] "

thought to be known) we can calculate the dose-enhancement factor by integrat- .
ing FDE versus Ey over the photon spectrum in a manner similar to the integra- M

tion given in equation (14). Calculated dose- enhancement factors for the-
spectra calculated by Woolf are given in table 7. Similarly calculated dose- • -
enhancement factors for the spectra determined by TLD differential absorption":"

measurements are given in table 8. The agreement between the dose-enhancement""

factors estimated from ionization chamber measurements and the "true" calcu- ,..
lated dose-enhancement factors is very good. The ionization chamber technique ,-[%
underestimates the true dose-enhancement factor by 9 percent. -

TABLE 7. COMPARISON OF FDE VALUES ESTIMATED FROM IONIZATION. ..•

-. -- -, - -- .- -° -

CHAMBER MEASUREMENTS WITH THOSE CALCULATED FROM MONTE-CARLO SPECTRA (ref 3,4)-__
For Cobalt-60 source configuration Filter hich ted specu isknwnr

though tosbtknwn)wedanCalculatedteds-naneetfco by itgrat-

Ng FDEce Eye Poton spectrmPb i Am FDE FDE e
tion given inpequastion FigCaluled(in.) (in.)hnmt

2 NBS Water well W o 3a (Unfiltered) 1.91 2.16 7

5 HDL Water well W 3b (Unfiltered) 2.97 3.08 a
0.063 0.125 2.02 2.09 7b L. ,

6 HDL Concrete room A 4a (Unfiltered) 1.86 198 7ceent
0.063 0,000 1 .714 1,76 7d ""

7 HDL Concrete room B 4a (Unfiltered) 3.02 3.51 7e l-u-

0.125 0.030 1.83 1.78 7f :...-
11 NASA Gammacelm '-t220 or 5b (ivrg f iltered) 2.02 2.57 7hque

aFigure showing source configuration.

bFigure showing calculated spectrum. [-?'

TABLE 8. COMPARISON OF FDE VALUES ESTIMATED FROM IONIZATION CHAMBER MEASUREMENTS
* C B M WITH THOSE CALCULATED FROM MEASURED COBALT-60 SPECTRA

Cobalt-60 source configuration Filter
Line Estimated Calculated Figureb

No. Place Type Position Figure
a  

Pb - Al FDE FDE
(in.) (in.)

1 NRL Water well Al 3a (Unfiltered) 1.86 188 8a

0.073 0.017 1.73 1.86 8b J

5 HDL Water well W 3b (Unfiltered) 2.97 3.5 8g

6 HDL Concrete room A 4a (Unfiltered) 1.86 1.88 8c

0.063 0.000 1.74 1.6 8d
7 HDL Concrete room B 4a (Unfiltered) 3.02 3.76 8e

0.125 0.030 1.83 2.00 8f

aFgure showing source configuration.
bFigure showing measured spectrum.
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8. CONCLUSIONS

The gold- and aluminum-walled ionization chamber measurement yields a "
simple and easy assessment of the magnitude of the low-energy scattered compo-
nent of a given cobalt-60 irradiator spectrum. While a complete gamma spec-
trum cannot be determined using this method, it does yield a measure of the
gold and aluminum equilibrium dose rates. These are directly related to the
relative magnitude of the interface dose-enhancement effect to be expected in
a microelectronic device irradiation.

The gold/aluminum ionization chamber technique yields an immediate quanti-
tative indication of the degree of dose enhancement which can be achieved by
any given filter combination for a particular source configuration.

The results clearly identify the types of source configurations which have

inherently high scatter. The results also provide empirical evidence that the
*" spectra of most practical cobalt-60 irradiators can be hardened to equal or
,. better that of the best available unscattered spectrum, if the test object is
*" enclosed in a filter box consisting of 0.063 in. of lead on the source side,

followed by no more than 0.030 in. of aluminum. The experimental data seem to "

indicate that smaller thicknesses of aluminum are better, and that no aluminum
may be best.

''.4'
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APPENDIX A.--DRAWINGS OF IONIZATION CHAMBER

Complete production drawings for the ionization chamber are given in this
appendix.
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APPENDIX A

# 30 DRILL

(.1285)

4 PLACES

1.625 .18

450 X 1/8 .031

2.000 1.5755 1.845
DDIA

MATERIAL: LEXAN
QUANTITY REQUIRED: 2

COVER
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APPENDIX A

J - .060

DIA BOTH SIDES
PARALLEL TOWTI.0005"

°. . ° P

MATERIAL: ALUMINUM ALLOY 7075

QUANTITY REQUIRED: 4

NOTE:
2 PIECES PLAIN :' "
2 PIECES WITH .002" GOLD FOIL BONDED TO ONE SIDE
USE EASTMAN 910 OR LOCTITE 496 CYANOACRYLATE ESTER
ADHESIVE. ;.

ELECTRODE

3 1.-. ..
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APPENDIX A

DRILL THRU AND TAP 4-40 '.1-
6 PLACES

-o- 2 .000 .0
-o 1.625-.18-.19

.187

1.575 # #60

DIA 1625 1.850

I SEE DETAIL A

.500 .5

1.000 .5

B BLi .19-

L I .3125 DIA0

.250 !NI Igl

.250 1 #60

VIEW: B-B DRILL

,1 # 45f DRILL
MATERIAL: POLYSTYRENE
QUANTITY REQUIRED: 1

BODY 
.0

DETAIL A
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APPENDIX A

.116 DIA.

.218C' BORE
X .125 DEEP
2 PLACES:-k

.220

.3125 DIA MATERIAL: ALUMINUM
QUANTITY REQUI RED: 1

CLAMP .

"46
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APPENDIX APO

CHAMFER

VERY LIGHT KNURL4
1/ 2" LONG

10"9

THREAD
5/16-24 UNF

.750 SLOTTED .0625" WIDE

.750 2 PL. 1800 APART
A-L-

QUANTITY REQUIRED: 1 LGT AE

*MAKE FROM: 5116 O.D. x 1/4 I.D.
ALUMINUM TUBING

STEM
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APPENDIX A

7/16

HEAVY KNURL

1/2

SNOTE: 450 X1/16

* 5/16-24 UNF INTERNAL THREAD
AND TAPER TO MATCH STEM''."

1/4 DIA HOLE FOR TROMPETER
TWC 78-C TWINAX CABLE

MATERIAL: NICKEL PLATED BRASS .

CABLE CLAMPING NUT
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APPENDIX B.--SIMPLE DOSE-ENHANCEMENT MODEL

Abstracted from W. Chadsey, IEEE Trans. Nucl. Sci. NS-25 (1978), 1591

This simplified dose-enhancement model can be used in combination with
ionization chamber measurements to estimate an upper limit for the dose- e

enhancement factor for a specific combination of material layers and cobalt-60

source configuration (see sect. 7 in the body of the report). t

Let 1 refer to a high-Z material (e.g., Au).

Let 2 refer to a low-Z material (e.g., Si).

Let FDE, the dose-enhancement factor, be the dose in material 2 at the
interface with material I divided by the equilibrium dose in material 2.

Then

R (prn/P)1 ..
R1  "en'i

FDE = f+ f2 R

2 n

where !

f1 =(1 - B00 + B2 )/2(1 - B112),

2= ( - B2 )(I + aI)/2(I - BIB2),

8Z = 90.475Z' 1 7 7 - 0.40,

RZ = electron range in material Z (g/cm2 ), and .

(Uen/p)z = mass energy absorption coefficient in material Z (cm2/g).

Using this simple model, the dose enhancement as a function of photon energy,
EY, can be calculated for any combination of materials, 4 Z 82, from
readily available tabulated range and mass energy absorption coefficient data. .

.

*= .s..

",% .i-
5 % '
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DEPARTMENT OF THE ARMY
HEADQUARTERS. U.S. ARMY LABORATORY COMMAND

2800 POWDER MILL RD.. ADELPHI, MD 20783-1145

(I REPLY TO
ATTENTION OF

SLCHD-NW-RI

TO: Recipients of HDL-TR-2082
FROM: Klaus G. Kerris, SLCHD-NW-RI
SUBJECT: HDL-TR-2082, Experimental Determination of the Low-Energy Spectral Component of

S Cobalt-60 Sources, by Kerris and Gorbics, dated April 1986.

This copy should replace page 37 of the above-described HDL report.

APPENDIX B.--SIMPLE DOSE-ENHANCEMENT MODEL
Abstracted from W. Chadsey, IEEE Trans. Nucl. Sci. NS-25 (1978), 1591

This simplified dose-enhancement model can be used in combination with
ionization chamber measurements to estimate an upper limit for the dose-
enhancement factor for a specific combination of material layers and cobalt-60
source configuration (see sect. 7 in the body of the report).

Let 1 refer to a high-Z material (e.g., Au).

Let 2 refer to a low-Z material (e.g., Si).

Let FDE, the dose-enhancement factor, be the dose in material 2 at the
interface with material 1 divided by the equilibrium dose in material 2.

Then

R, (ien/p)l
FDE = f2  + f l 11 (1 en/ P 1

11T2 (lPen'P)2

where

fl = (1- 01(1 + a21/2(1- 102),

f2 = (1 - 02){1 + 1)1 2(l - 01$2),

6z 0.475Z 0'-7 7 - 0.40,

RZ = electron range in material Z (g/cm 2 ), and

(Pen/P)z - mass energy absorption coefficient in material Z (cm
2/g).

)siri;g this simple model, the dose enhancement as a function of photon energy,
E., can be calculated for any combination of materials, 4 9 Z 5 82, from
readily available tabulated range and mass energy absorption coefficient data.


